

e-shape H2020: enabling tools supporting PV integration by revamping the solar cadaster concept

Rodrigo Amaro e Silva, MINES ParisTech Postdoctoral researcher rodrigo.amaro e silva@mines-paristech.fr

2 March 2022

Programme for today

Urban environments and photovoltaics

Brief intro on solar cadasters

Our work in the e-shape project

The result from a team effort (alphabetical order):

Benoît Gschwind, Lionel Menard, Philippe Blanc, Raphaël Jolivet, Romain Besseau

Centre Observation, Impacts, Énergie Renewables, Life Cycle Assessment, Earth Observation

Assumptions for today

Solar is good, fossils are not

Urban environments & photovoltaics

People

Business

High surface availability

Urban environments & photovoltaics

Solar cadasters: a starting point

Accurate and easy-to-use to assess rooftop PV potential at the urban level

Partial screenshots from In Sun We Trust website, https://nantes-metropole.insunwetrust.solar/simulateur

Solar cadasters: a starting point

Accurate and easy-to-use to assess rooftop PV potential at the urban level

Partial screenshots from In Sun We Trust website, https://nantes-metropole.insunwetrust.solar/simulateur

Solar: more dynamic than "typical annual values"

Different levels of variability and uncertainty at different time scales

13

Time [hour]

18

8

Solar: more dynamic than "typical annual values"

Obstruction shadowing as an additional element for urban PV

Source: YouTube video from ArcGIS

The issue with solar cadasters

computations!

- **COMPROMISE** smaller regions of interest
 store only aggregate values

The e-shape project

https://e-shape.eu/

4 years grant (2019-2023)

60 partners, 7 showcases

Promoting **users' uptake** of European Earth Observation resources

Development of **co-design pilots** (33!) to deliver **economic**, **social** and **policy value** to European citizens

Pilot #2: High PV penetration in urban areas

Objective:

develop GIS-like tools to support **high PV penetration** at urban scale by providing **EO-based information**

Expected user community:

Urban planners, grid operators, market agents, researchers and citizens

There are two parts of the pilot

ARMINES is responsible for the part shown in this presentation

Partners:

Our core value proposition

Shifting from a static solar cadaster to urban-scale solar variability

Traditional "static" solar cadaster

"Dynamic" solar cadaster

Our core value proposition

Solar calculations in urban environments based on Earth Observation data

Cloud-based

Scalable

 $\mathsf{ON} extsf{-} ^{\mathsf{demand}}_{\mathsf{the-fly}}$

Interoperable

Our core value proposition

Exploring a variety of Earth Observation data

Digital Surface Model (DSM)

Satellite data

Ground measurements (when available)

#1 PV sizing for self-consumption

#2 PV injection at distribution grid level

#3 Forecasting for PV trading

#4 Shadowing impacts of new buildings

PV sizing for self-consumption

PV injection at distribution grid level

Forecasting for PV trading

Forecasting algorithm

Carrière et al., Energies (2021)

A New Approach for Satellite-Based Probabilistic Solar Forecasting with Cloud Motion Vectors

Which can be available for you to try out

A **demonstration** can be found in **Youtube**: https://www.youtube.com/watch?v=Sj9eMoLFi0g

To get an account to test the pilot: send me an e-mail rodrigo.amaro_e_silva@mines-paristech.fr

As a follow-up:

- we will send instructions together with a short feedback survey (4 questions!),
- You will have access to a temporary access to test the tool and can apply any modification you want

It is **possible** that we can schedule a **time slot for providing some live support** with the tool

Closing words

PV modelling in urban environments is a very rich topic

Firm belief that on-the-fly dynamic solar cadasters can leverage multiple services

Rodrigo AMARO E SILVA
MINES ParisTech, PSL Research University
Center Observation, Impacts, Energy

Postdoc Researcher e-shape H2020 project

rodrigo.amaro e silva@mines-paristech.fr

www.mines-paristech.fr www.oie.mines-paristech.fr

Joint Universal activities for Mediterranean PV • integration Excellence

Stimulating scientific excellence and innovation capacity of MCAST Energy in the field of Photovoltaic (PV) integration research, as a regional leader.

EXTRA SLIDES

Brief description of shadow modelling

Mapping the horizon around each pixel (both from terrain and urban orography)

Brief description of shadow modelling

360° horizon profile superimposed with sun trajectory (defining shadow events and shadow impacts)

The IT setup behind the pilot

Infrastructure

Data and Information
Access Services (DIAS)
"The data infra-structure"

Web Processing Services (WPS)
"The external data fetcher"

Online Jupyter Notebooks "The front-end"

The data behind the pilot

Urban surface modelling

Digital Terrain model (DTM)

decametric (e.g. <u>SRTM</u>, ASTER)

Digital Surface Model (DSM) + map of buildings

high-resolution (IGN - BDTOPO©)

The data behind the pilot

Satellite-based solar resource

Clear-sky irradiance aerosols, water vapour McClear (CAMS)

All-sky irradiance clouds CAMS-Rad / HelioClim3

The algorithms behind the pilot

Shadowing

PV conversion

Forecasting

Why forecast for PV trading

Horizon (in 2 hours)

We will need to forecast the solar generation

Impact of disregarding urban shadowing

Left to right, the impacting of considering urban shadowing dark line: satellite estimate, red dots: forecasting

We could overestimate our generation by 10-100%!

