

EuroGEO Showcases: Applications Powered by Europe

Preliminary Information for the Health Surveillance Air Quality Pilot's Remote Athens Codesign Workshop

National Observatory of Athens (Pilot Lead) & ARMINES - PARISTECH MINES (WP2)

What is e-shape?

EuroGEO Showcases: Applications Powered by Europe

H2020 project **e-shape** positions Europe as a global force in Earth Observation (EO). EuroGEO, Europe's contribution to the Group on Earth Observation (GEO), brings together EO resources in Europe.

e-shape leverages Copernicus, making use of existing European capacities and improving user uptake of data. It builds on existing EU GEO actions, GEO initiatives/flagships & Copernicus-related activities.

54 partners creating **27 cloud-based pilot** applications under **7 thematic areas**, which address societal challenges, foster entrepreneurship & support sustainable development (4 years grant).

e-shape

PILOT 3

Health Surveilance Air Quality

e-shape

Pilot 3 Introduction

Global Service:

Using satellite data to look at trends of AQ and aggregate health risk index

Athens, Greece:

City-scale AQ modeling data + local health, land use, socioeconomic data

Helsinki / Porvoo / Turku, Finland:

Satellite derived emissions data for oil refinery in periurban areas

Vienna, Austria:

Existing citizen
science platform +
AQ functions
(perceived AQ &
health & local AQ
data)

Munich, Germany:

Testing satellite derived AQ data at the city-level

Current Landscape + Pilot Value Add

- Existing Euro-Healthy: "Shaping EUROpean policies to promote HEALTH equity" Project & platform (until 2014) displaying population health index for some municipalities
- Our Health Surveillance Air Quality Pilot builds off this as a broad starting point ADDING higher resolution/detailed air quality information, health and socioeconomic data at the municipality level based off user needs

Focus on Athens Air Quality

- High resolution air quality product with city scale modeling – resolution below 1km
- Key regulated pollutants (O₃, NO₂, PM₁₀, CO) and BC
- Integrates CAMS regional AQ ensemble forecast, prognostic meteorological model & high-resolution emission inventory (incorporating low/mid-cost smart sensor measurements)

Building a multi-faceted health surveillance service for Athens (at the municipality level)

Health

- 1980-2016 number of deaths from respiratory & cardiovascular causes (age/sex)
- 1980-2017 daily number of deaths
- Number of hospital beds/doctors/etc.

Socioeconomic

- Inhabitants per square kilometer
- GDP per capita
- % unemployed

Building a multi-faceted health surveillance service for Athens

Health

- Dynamic population exposure
- Utilisation of Health Impact
 Assessment PAQ Tool (health loss related to air quality/financial cost)
- Other datasets identified through codesign & interaction with Pilot users

Socioeconomic

- Global Human Settlement Layer uniform population density grid using built-up area & census information
- Other datasets identified through codesign & Interaction with Pilot users

Static vs. Dynamic - Population Weighted Exposure Athens
December 2018

This is where we need YOUR input, help, guidance & data!

CO-DESIGN PROCESS WP2

Co-design in e-shape

Co-design adapted to the Earth Observation context

Specificities of Earth Observation (EO) context → need of a specific co-design methodology, built and experimented in e-shape, in two phases: (1) diagnosis process (2) implementation of co-design actions

Usual context

Final user

Usual co-design

Fine-tuning of the list

of requirements

Service provider

« Distant » relationship

Logistics for winter tire change

Solar energy potential

Value for end user

From the user's point of view, not self-evident that EO data might be useful

Even when there are existing usages → what evolution? → constant invention of new usages...

EO data

EO context

Co-design in e-shape

Co-design adapted to the Earth Observation context

Specificities of Earth Observation (EO) context → need of a specific co-design methodology, built and experimented in e-shape, in two phases: (1) diagnosis process (2) implementation of co-design actions

Usual context

Final user

Usual co-design

Fine-tuning of the list

of requirements

Service provider

EO context

Co-design in e-shape

Co-design adapted to the Earth Observation context

Specificities of Earth Observation (EO) context → need of a specific co-design methodology, built and experimented in e-shape, in two phases: (1) diagnosis process (2) implementation of co-design actions

Diagnosis process

Representation of each pilot on a « value – information – data » framework

Identification of codesign needs

Implementation of co-design actions

Workshop adapted to the identified co-design needs

→ Today workshop

Diagnosis of co-design needs for each pilot

2 1st tool: representation of each pilot with a « value-informationdata » framework

Diagnosis of co-design needs for NOA's sub-pilot

to interact with

cooperation modalities

For NOA's sub-pilot: outcomes of the 1st phase of diagnosis = co-design type 1.
 → diagnosis followed by implementation of co-design actions, initialised through this workshop

(platform & modules)

usages and users

WORKSHOP PREPARATION

objectives – agenda – questions for participants

Workshop objectives

Workshop topic

Co-design with potential service users to build an air quality & health surveillance platform in Athens

- Objective: assessing and enhancing the list of requirements of the service for the different users.
- Expected outcomes:
 - Broader range of potential lists of requirements (related to different types of data-driven actions, from short-term to longterm)
 - 2. « Building blocks » for futher development of the service (knowledge shared by participants, identification of missing knowledge/competencies)
 - **3. Coordination modalities** between NOA and participants for further development of the service

Workshop agenda

- **9h 9h05** Welcome: Introduction to e-shape
- 9h05 9h15 Method presentation (MINES ParisTech team)
- **9h15 9h30** Health Surveillance Air Quality Pilot (Showcase 2 Pilot 3): EObased pollution-health risks profiling in the urban environment (NOA team)
- 9h30 10h45 Knowledge exchange by each participant (see next slide for guiding questions)
- 10h45 10h55 Break
- 10h55 11h45 Enriching the lists of requirements based on participants' inputs and assessing potential users' involvements (participants + new actors)
 - ② 1st generation service: improvement of the service with functions that could
 be immediately integrated
 - *2nd generation services: quick & smart realizations of dream functions*
 - *3rd generation services: resources to make accessible dream functions*

Specific questions to be prepared in advance by each participant for the knowledge sharing phase

- What are your current operations that would potentially benefit from the Athens service?
- According to what was presented by NOA, what would you do with this service?
 - If you use the service for monitoring purposes, what information would you like to monitor?
 - What types of actions in your operations would it potentially support?
 - Beyond using the service for your current workflows, how could the service help you to develop new operations or services on a longer-term perspective?
- What would be the constraints, drawbacks and risks of using the Athens service?
- If you forget the current technological/resource constraints, what Earth Observation applications would you dream of?